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PREFACE

The problem of a precise method of analysis for air-
plane jury-strut systems was selected by Mr. A. Murray
Schwartz as the subject of his Engineer'!'s thesis at
Stanford University. Mr. Schwartz's study resulted in the
derivaetion of suitable theoretical eguations and the de-
velopment of a system of using them in practical desisgn.
He did not have time, however,,K to carry out any experi-
mental work to prove the validity of his formulas. In %the
wilnter of 1933-34 another graduate student at Stanford,
Mr. Reid Bogert, made the experimental investigation of
Mr. Schwartz's formulas the subject of his Engineer's the-
sis, and obtained data to prove their wvalidity.

Owing to the length of these theses, the N.4.C.A.
did not consider it advisable to publish them in full, but
accepted the offer of the writer, undér whose direction
the two theses were prepared, to combine them into a sin-~
gle report of length suitable for publication. The work
of the writer has been primarily editorial, the theoret-
lcal derivations of the first part of the report being
that of Schwartz, and the experimental work of the second
part that of Bogert. While the theses on which the pres-
ent report 1s based were written under the direction of
the writer, his supervision was not very close and by far
the greater part of the credit belongs to the two students.

The title of Schwartz's thesis was "Structural Analy-
sis of Alrplane Jury Strut Systems". Study of the prob-
lem showed that its essential feature was the analysis of
a strut with a single elastlec support at any specified
point between its ends. This is a general problem of
which the airplane Jjury-strut system is only a special
case. Bogert'!'s thesis was acecordingly entitled "Tests on
Struts with a Lateral Elastic Support in the Span". The
title of the present paper was chosen to indicate both the
essentizal problem attacked and its most important appli-
cation in aeronautical design.

Alfred S. NMiles.
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ANATLYSIS OF A STRUT WITH A SIWGLE SLASTIC SUPPORT 1IN
THE SFAN, WITH APPLICATIONS TO THE DESIGN
OF AIRPLAME JURY-STRUT SYSTEMS

By A, Murray Schwartz and Reid Bogert

PART I
DERIVATION OF FORMULAS

By A. M, Schwartz
I, INTRODUSTION

The need of a precise analysis of airplane Jury-strut
systems was suggested by ¥r. Richard ¢. Gazley in an arti-
cle entitled "Late Developments in Airplane Stress Analy-
sis liethods and Their Bffect on Airplane Structures.* 1In
the paragrarphs on the jury strut, ke says, "among design-
ers of strut-bPraced monovplanes, there is an increasing
tendency to reduces the weight of the extermnasl wing bracing
by providing the main struts with lateral support at abount
one third the distance in from the outer ends. This sup— -~
port is furnished by 2 small guxiliary strut, commonly
called a Jury strut, which is attached to the wing spar at
its uprer end. This type of design is gquite effsctive
for the purrose intended, but 1% has introduced some 61f~
ficult analysis prodblems.

"The case in which the auxiliary strut and the upper
end of the main strut are both pinned at their intersec-
tion is fairly simple, and has been successfully analyzed
by a number of designsrg. The more common case, however,
where the maein 1ift strut is continuoms, is greatly com-
plicated by a number of factors affecting the force dis-
tribution. A precise solution of this problem probadly
would result in wnwieldy formulas but would enable the im-
portance of the various factors to be determined.’

*35.4.3. Journal, September 1932,
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The problem assumes a difficult aspect because of
the simultaneous deflection of both strut and spar, one
@epending upon the other, and because of the secondary
stresses and deflections present duse to axial loads in
the members, This can easlly be illustrated by reference
to figure 1, in which the broken line represents the un-
stressed structure, and the solid lines an exaggerated
view of the members when under load. The elastic curve
of the spar is, of course, quite dependent upon the side
or air load upon it and the amount of overhang. Since ax-
ial compression is the critical lozd on the 1ift strut,
the airplane is assumed to be in inverted flight. This
condition imposes a "down" side load upon the spar, and
consequently the spar and strut are under axial tension,
and compression, respectively.  If a jury strut 1le con-
nected to the spar at point ¥B- where the spar 1s deflect-~
ed due to the external air loads, the strut will also be
deflected. Then, due to axial load in the strut, second-
ary stresses will be produced which will tend to increase
the deflection of B, This increased deflection will
causé increased secondary siresses which will multiply un-
til a state of eguilibrium is reached; that is, the gup-
porting forces developed in the spar will equilibrate the
buckling of the strut. If it were possible that a point
of zero deflection such as point ‘A" could be used as the
upper Jjury-strut connection, there would be ne bending of
the strut " @and, as a consequence, no secondary sbtresses to
cause a further deflection of point A. Thls situation
can only be present for one actual loading, however, be~
cause a change of the axial load or the side loading on
the spar moves the point of zero deflection. Moreover,
even if 1t were possible that such a state of affairs
could exist, i1t would be necessary to investigate the
structure so that the elastic stadility of the strut
could be checked. It will be shown later that baoth of
the above cases are almost alike, and that the presence
of initial deflection due to the air loads on the spar
does not alter or complicate the determination of the
critical load an the strut or that of the size of the
load on the Jury strut to a very great extent. When the
size of the load in the jury strut has been calculated,
it is quite easy to determine the maximum unit gtress in
the 1lift strut by means of the Newell extended equation
for a beam with supports deflected. (Precise three-moment
equation found in "Airplane Structures' by Niles and
Newell, p. 192.)
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It was believed at the beginuning of the work on the
precise solution of Jjury strut systems that rather com-~
plicated formulas would be obtained, but it was found
that the solutior was little mores unwieldy than the cal~
culation for the moments on a continuous beam by means of
the extended three-moment equation,

A review of the obstacles encountered in the precise
solution of Jjury strut systems, shows that the probdlem
may be resolved into four distinct phases. These are:

1. Determinationrn of the "spring constant" of a point
in-the span of au axially loaded beam, and the relations

between this spring constant and the stability of the mem-
ber., :

2. Determiration of the stability of a strut support-
ed at some point along its span by means of a jury or aux-
iliary strut connected to another strut or beam, the sup-
porting beam belng under either axial compression or ten-~
sion, a) when the supporting member has no initial de-~
flection caused by external side load, and ©b) when exter-
nal side load causing deflection is present.,

3, Determination of the load in the jury strut and
the deflection present for a given side load on the sup—_

- porting member, C

4, An investigation of the critical conditions
through which the asystem passes as the axial load is in-
creasgsed from zero to the final critiecal load, and the
formulation of a method of determining the maximum criti-
cal - l1oad in a supported strut. :

In order to give a complete explanation of the formu-
las and methods derived, several numerical examples are
presented, three consisting of very simple structures,
and the fourth being a representative jury-strut system.-

- e reae
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II. REFERENCES

Mlate Developments'in_Airplane Stress Analysis Methods
~and Their Effect on Airplane Structures", by Richard

C. Gazley, S.A.B. Journal, September 1932,

This article outlined the problem and presented
the difficulties to be encountsred as follows: '"The

.deslgn of the main 1ift gtrut then resolves itself in-

to the problem of finding the critical load for a pin-
ended, long column - -initially straight dbut deflected
laterally a constant amount at some point along its
length. To be more accurats, the deflection could be
taken as a linear function of the axisl load in the
column. The solution of thig problem would be a val-
uadble addition %o our knowledge of sbtrength of materi~
als. Pending such a solution, we must rely on empir-

~lcal farmulas and meager B#est data for our allowable

loads and ‘therefore need to provide ample margins of

. safety.! -

"Airplane Structures!, bleiles and Newell, Wiley,
New Yorilk. :

This volume supplied a basic theory and eguations
for the formulas derived in this paper.

"On ‘the Buckling Strength.of Beams Under Axial Com-

‘pression, Bridging Elastic Intermediate Supports', by

W. B, Klermperer and H. B. Gibbons, contributed by the
Applied Mechanlecs Division of the A.5.M.E. for presen-
tatlon at ‘the National Appllied Kechanics Meeting., Ncow
Eavén, June 1932.

, Although this paper did not consider the case of
struts having unsymmetrical bays with supports having
deflections due to external loads, and was of no di-
rect use, it did supply valuabdle information as to
methods of attack for which the writer 1is very grate-
ful. This paper was also used-as a check for the spe~
cial case which it covers in common with this paper,
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III. DEFINITIONS

For convenience of reference, definitions are given
here for a group of terms that will be used frequently in
the subsequent text.

Beam - the supporting member of a pair (the
" wing spar in the airplanse 3ury~stru£
system).

Strut ~ the supported member of a pair (the'
1ift strut in the airplane jury-strut
system).

Load _ _ - (P), axial tension (+) or compression

(=) in the beam or the strut as indi-
cated by subscripts or the context.

Total load - (Pgp), the algebraic sum of the loads
in" the beam and strut when they are”
parallel.

Supporting forcs

(-W), the lateral force reguired to
hoId the strut in equilibrium.

(W), the lateral force imposed on the
beam in supporting the sirut. Support-
ing load and supportlng force are nec-
essarily equal in magnitude dbut oppo-
site in Sign. They are also the ex-
ternal forces acting on the jury strut.

Supporting load

Jury strut ' - member joiniug the beam and the strut
which causes tnese two members to in-
teract.

Side load = (8), any lateral force other than the

suppotting load which acts on the beam.

Spring constant -~ (k), the rate of change in the lateral
load required to maintain equilibdrium
at a point along the span of the beam
(or strut) with respdct to the lateral
deflection of that point.
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IV. THE SPRING CONSTANT FOR AN AXIALLY LOADED BEAM

The first step in the study-of the stability of an
elastically supported strut is to explain the derivation
and significance of what will be termed the "spring con-
stant" of & point on the span of an axially loaded beamn.
Mathematically this spring constant may be deflned as the
partial derivative of the transverse load at the point
with respect to the deflection of that point. This can
also be sxpressed in simpler though less concise language.
If the besam is asgumed to remaein in equilibrium, although
the deflection of some point on the span is changed, there
must be some corresponding change in the external loading.
If 1t be assumed that the only change in the external load~
ing is the addition of a transverse force at the point in
gquestion and suiltable reactions at the supports, there will
be some definite relationship between the changes in the
deflection of and the external force at the point., Inspec-—
tion of the formulas for the deflection of an axially loaded
beam will show that there is a linear relation between the
magnitude of the transverse load on an axially loaded beam
and the deflection of 1ts point of application., Thils is
shown by the fmct that they can all be written in the form

- ¥
8 = g+0 (1)

where 8§ is the deflection of the point in gquestion
W is the lateral load at the same polnt

k and ¢ are constants depending on the location of
the point, the dimensions and material of the beam, the )
magnitude and chargcter of the axial load, end moments,
transverse loads at other points, etc., but independent of
the transverse load W.

Prom equation (1) it is apparent—that if the load W
is the only one to vary as the deflection of its point of
application changes, it must change by k pounds for each
inch of change in that deflection. The quantity k 1s
therefore the spring constant as defined mathematically
above., It may also be defined as the transverse load re-
quired to cause a unit (one inch) deflection of its point
of application.

The formula to be used for the computation of the
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spring constant in any given case will depend on the char-
acter of the axial lcad and whether or not the cross sec-
tion of the beam is constant. ' In this report only two
groups of cases will be considered.

1. Beams of constant ssction with the axial load the
same on both sides of the roint for which the spring con—~
stant 1s to be computed.

2. Beams in which the cross section and axial load
are constants on each side of the point for which the
gspring constant is to be computed, but in which one or
both of those quantities change at that point. Thig class
of cases is of interest as the axial load in, and cross
section of, the 1ift strut may change at the p01nt of con-
nection of the jury strut.

" In the main body of the report attention will be di-~
rected, in general, to those cases of the first group in
which the axial load is compression. It is to be under-
stood, however, that the conclusions arrived at in respect
to the significance of the spring constant, the criteria
for stability, and the general equations for.the deflec-
tion of the supported strut system in terms 6f the spring
constants involved, apply egqually to all cases (even those
in which the axial load and the cross section vary contin-
uwously =mlong the span) unless otherwise noted. Formulas
will also be derived for the cbmputation of the spring
constant in cases of group 2 in which the axial load is
compression., XNo attempt will be made to derive more gen-
eral formulas for the spring constant, but the derivations
given should be a sufficient guide to permit the engineer
to handle any other case in which he is able to compute
the deflection due to & unit transverse load.

. Before attempting to discuss the relationships between
the spring constant and the stability of & strut, i1t is de-
sirable to develop the formulas for the spring coanstant in
& representative caso. For sinmplicity, the case studied
will be that of a strut of constant section and constant
axial load.  Three conditions must be considered, depend- - -

ing on whether the axial load is compression, tension, or
ZOeTO0.

The formula for the deflection of a point on the span
of a counstant section beam subgected to axlal compression
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and a single concentrated transverse load is*

Mz - M : \
b = L /Ml + —E—E-5 x - E%E -~ 01 sin § - Ca cos-z\ (2)

P\ J/ .
where
Mo My - W § sin(a/J) : 8
G - - - - W cos —
* sin(L/J) tan (L/3) ! J
Oz = M, -

If the axial load P, and the end moments M; and Ma.

be assumed not—to vary, equation (2) is obviously a special
case of equation (1). TPFrom the discussion on page 189 of
reference 2 it .can be seen that the only effect of add-
ing other transverse loads to the system of forces acting
on the beam would be to make necessary the addition of
some morse constants to eguation (2), which would modify
the value of the constant . ¢ of equation (1). The con-
stant k of equation (1) would not be affected,

Combining equations (1) and (2) we have as the formu-
la for the spring constant of-a beam subjected to axial
compression.

1o_ L (e, jei@(a/y) 4
ko F \L (tan (L/3)

sin & cos 5) (3)
J J
In this formula the subscript c¢ is used to indicate that

the axial load is compression,

ko> spring coastant for the point and sxial compres-
sion 1n question

*Pagce 205 of roference 2. This forwula applies only to
the section of the beam between the—left end and the poilnt
of application of the side load W. By substituting a
for. x it gives the deflection of the point of applica-
tion of W. The same result could be obtained by placing
a for x in the expression also given on page 205 of
reference 2, for the deflection between the load and the
right-hand end of the span.
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a, distance from left end of span to the point in
guestion
L, 1length of span
b=1L - &

4 = JETF : el L

Similarly we can obtain as the formula for the spring
constant of a beam subjected to axlal tension*

1 _ Ll (ab 4 sink® (a/3)
ky, P \EL tanh (L/J)

\
- inh & h & 4
J sin 3 cos J) (4)

The spring constant for the case of gero axial load
can be obtained by setting P = 0 1in equation (3) or (4),

but the resulting indeterminate form 0/0, is awkward to
evaluate. A simpler method of obtaining this spring cozn-
stant kg5, 1s to differentiate the formula for the de-

flection of a simple beam subjected to a single concen-

trated side load as given on page 264 of reference 2.
This gives

6 EIL ZE I L - .
0 a _b (LZ _ az - .bz) a2 .bz _

The spring constants as given by equations (2), (4),
and (5) apply to all cases of beams, struts, or Tiés of '
constant section and constant axial load regardless of.
the presence or absence of end moments and other side loads
on the member, In practical computations they may be used
to determine either the spring constant of the member that
requires support or that of the member which furnishes
support. -_— - - caT

V. VARIATION OF SPRING CONSTANT WITH AXIAL LOAD

It would be interesting to make a general study of
the effect of varying the axial load upon the sign and
magnitude of the spring constant, but the trigonometric
expressions involved are too complex for this to be dons LT
conveniently. 3Before going into the relation between the

*For derivation, see Section III of the Appendix,
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sign of the spring constant and the stabillity of a member,
it is degirable, however, to see how the spring constant
varies with axial load in a typical case. The example
chosen is that of a strut 180 incheg long with BI =
9,000,000, The values of the spring constant for the

third point of this member, as obtained from equations (3),
(4), and (5) are plotted as ordinates in figure 2, For
convenience, the abscissas in figure 2 are the values of
the ratio IL/J 4instead of the corresponding values of thse
axial load P, .

The curve of figure 2 is representative of the curves
of spring constant for all cases. Whenever the axial load
s tension, the spring constant will be positive and will
increase with the magnitude of the axial load. When the
cross section 1s constant and the axial load is compres-
sion and constant along the entire span, as the axial load
increases the spring constant will be a decreasing posi-
tive quantity until 1/j = m, when the spring constant
becomes zero., As L/J continues to increase, the spring
congtant is & negative quantity of increasing magnitude
until a critical load is reached at which Xk, = negative

infinity. At this critical load 1 < % =z 2w, If 1L/j for

the .critical load is less than =<, the spring constant
varies from positive infinity at the eritical load to zero
L/3 = 2w. When 1/j exceeds 2w the spring constant is
negative and increases with L/j. at least until L/J =
10.0 in the case mnnder consideration. The velues of
spring constant for higher values of L/J have not been
investigated in this study but there 1s probably a criti-
cal load at which the spring constant passes thron¢;h in-
finity for every increase of 2m in /3.

The values of the spring constant for 1/) valuese
in excess of that for the critical load between L/j = T
and L/j = 2m apply to elastic curves of the beam which
are unstable unless the member 1s provided with more than
one transverse supporting force. For this reason. they are
not of direct interest in this study which is limited to
cases in which there is but one surporting force in the
span.,

The curves of spring constant vs. axial load for
beams of nonuniform section and axial load would be similar
to that shown in figure 2. In such cases, however, P/EI
1s not constant along the span and the expressions for the
loading at which the spring coastant becomes gZero and infi-
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nite become much more complex than in the case represent-
ed in figure 2. The only case of that character that will
be considered in this report will be that in which the
cross section and the axial load are constant on each side
of the point for which the spring constant is determined,
but in which there is a sudden change in these gquantities”
at the point in guestion. This case will be treated later.

VI. RELATION BETWEEN SPRING CONSTANT AND STABILITY

The simplest method of determining the relations be-
tween the spring constant of a beam or strut and its sta-
bility is to make a parallel study of the sign and magni-
tude of the spring constant and the mechanical actlon of a
strut as the axial load wvaries.

The Unsupported Strut

The simplest case to discuss is that of an ideal pin-
ended strut having no lateral support.' When such a strut
is loaded in tension or with a compression below the crit-

ical Buler 1oad,.( % < T2, P < m? E% ), it will be found
: I

that for egquilibrium a lateral deflection must be accompa-
nied by a force in the same direction as the displacement
of the strut. Thisg merely means that the strut resists a
side force. Formulas (3), (4), and (5) give positive val-
uwes -for the spring constant in this range of 1L/j, which
is a mathematical way of expressing the same fact, The
strut is then elastically stable, and if it .is deflected
from its normal straight position by an external force,

it will immediately snap back into place when the force is
removed.,

Now suppose the strut is loaded with the critical
Euler load (; =1, P= %l>. The spring constant as de-
J

termined from formula (3) is zero. This means that changes
in the lateral deflection do mnot have to be accompanied by
changes in the side load in order to maintain equilibrium.
From this it can be desduced that the strut will be in egui-
librium in any deflected position, and has no tendency to
spring back into rlace due to its own stiffmness. 'The

strut is therefore elastically indifferent, - ' o
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If now we load the strut over the critical Euler load

<% >1m7, P >m3 %;), the spring constant is found to be

negative, that is, for equilibrium a lateral deflection
must be accompanied by a force in the opposite directilon.
Thus the strut within itself is elastically unstadble, for
the slightest lateral deflection will cause buckling if
no external supporting force is available,

The practical strut differs from the idedal strut pri-
marily in that it may be subjected to end moments and for
gside loads as well as axial loads. 4s noted adbove, the
absence or-presence of such forces has no influence on the
magnitude of the spring constant. They do, however, make
a little difference in the physical action of the member
under load. In case the axial load is tension, or a com-
pression such that L/j < m (the range of positive spring
constants), they cause the strut to deflect uniil a posi-
tion of equilibrium is reached, The impogition of an ad~
ditional side load will cause additional deflection. On
its removal, the strut, instead of becoming straight, as
an ideal strut would, returns to the equilibriuvm position
it had assumed uUnder the remaining loads wheh they acted
alone., If L/J .is equal to or greater than m, the side
loads and end momeunts on the practical strut causé it to
deflect, and the axial load produces secondary bending mo-
ments causing increased deflection as fast as, or faster
than, the deflection itself., The gtrut therefore never
reaches a condition of eguilibrium unless a sufficient
supporting force acting in the direction opposite to the
deflection is added to the system,

One method of obtaining such a supporting force is
to connect the strut, which i1s unstable by itself, through
a more or less rigid link (or Jjury strut) to a member of
sutfficient stiffness that the resistance to deflection of
the latter will provide the force required. One of the
chief obhjects of this report is to determine the stiffness
required in the supporting member so that the combination
will be in stable equilibrium. For simplicity the member
which reguires support will be called "the strut" and the
one—which provides such support "the beam", Inm the nor-
mal airplane jury-etrut system, the 1ift strut is "the
strut”’ and the wing spar is "the beam'. Furthermore, the
force acting on the strut reguired to maintain stabillty
will be called the "supporting force". The equal and op~
posite force acting on the beam will be termed the "sgup-—
porting load',
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The above discussion indicates ihat, if the strut is
to be adequately suppérted, the beam must be loaded below
the critical Ealer load, so that it is’ elastically stable
in itself (spring constant is positive). Or, te state the
requirement less formally, the supporting beam must have
Hexcess stiffness" t0 maké Hp-for the tendency of the sup-
ported strut to buckle.: The above discussion also indir
cates that a strut loadeéd to or above the ‘critical Euler
load (i.e., spring constant is Regative) must be support-
ed if it is to be stadble.  Kccordingly, we must nexi turn
our attention to thé elastic stability 6f g strut which is
loaded above the Euler 1oad but supported elastlcally.

- - . R ———

The Supported Strut

The mechanics of the elastic stability of the sup-~
ported strut is very similar to that of the ‘unsuppo¥ted
strut.. There aré three conditions to be studied: the elas-
tically stable, indifferent, and unstable. In this discus-
sion it will first De assumed that there is no initial de-
fléction of the beam due to transverse forces other than
the supporting load. This will be followed by a consider-
ation of the effect of the presence of such an initial de—
flection of the’ supporting beam. S e -

We have~an elastically,stable.supported strut when .
the spring constant of the beam is greater in magnitunde
than the negative. spring constant.of the-gtrut: In this
case we see that %o produce any: deflection of the support
point orn-the Ppeam, g greater force is needed than that re-
quired to prevent the strut from buckling, and if any de-
flection is produced by a momentary force, the strut is
forced back to its original position as 8oon~as the momen-
tary force is removed. This cond‘tion corresponds to the
case in which the unsupported strut was 1odde& below the )
eritical Euler load:. - e '

“"Now suppose“that the spring cohstants of the gtrut.

and beam are of equal magnitude but of opposite sign. If
the support should be deflected a distance &, and the
force causing the deflection should be removed, the beam

would be capable of exerting a supporting force egual to

k 8§, where k 1is the spring constant of the Beam, il.e.,
.the load required to produce unit deflection of the sup-" -

port point. This supporting force, howeveTr, is of Jjust

the right magnitude to provide the necessary suppért for ' ST
the strut and there would be no tendency either to spring
back to the original positions or to deflect further. A
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state of equilibrium is thus found for any deflection of
the members; the system is elagtically indifferent as in
the case of the unsupported strut loaded with the critical
Euler load,

The last case follows when the spring constant of the
supporting beam is smaller in magnitude than that of the
strut, At the smallegt lateral deflection the force re-
quired to hold the strut in equilibrium will be larger
than the available supporting force, and the system will
buckle. This is an elastically unstable condition, cor-
responding to the failure of the unsupported strut which
is loaded above the critical Bulsr load.

Effect of Initial Deflection

The action of the strut and beam combination when
there ig initial deflection of the beam can dbe studled
most convenlently with the aid of figure 3, in which are
plotted the curves of variation of supporting force (or
load) with deflection., As the partial derivatives of W
with respect to & are constants, these curves are
stralght lines with glopes numerically equal to the re-,
spective spring constants, kg for the strut and ky for
the besam. In the figure ©OD represents the variation
with deflection of the supporting force required by the
strut. The actual values plotted, however, are those of
the equal and opposite supporting loads that would be im-
posed on the beam. 48 it 1s assumed that there is no 1in-
itial deflection of the strut, the equation of 0D 1is

g = =~kg 8§ . (6)

Ag the strut would need no support when kg 1s pos-
itive, 1t is assumed that kg 1is negative and thercfore
~kg 18 positlve. The variation in the avallable support-

ing force 1s shown by the line AC, the equation of which
is

Wy = ky (8 -~ 84) (7}
where 8§, is the deflection of the beam due to all forces
other than the supporting load. It will be called the "in-
itial deflection'" of the bean.

In the case shown in figure 3, the beam and strul
would &deflect to the equilibrium position indicated by B,
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the intersection of OD and AC. At this deflection, &g,

both the regquired supporting force for the strut and the
available supporting force are equal to We. When the
deflection is less than §g, the supporting force is in-
sufficient to prevent further deflection, but if the de- =~ ~ 77
flection 1s greater than §8g5. the supporting force 1is

the greater and the beam would force the strut back ant il

the deflection was reduced to 8ge. -

It should be clear from this figure that a2s long as
ky is numerically greater than kg the two curves will

intersect at a positive value of § and there will thus
be an equilibrium position. If kp is equal to or small-
er than kg, however, there will be no such intersection
and the combination will be unstable. The magnitude of
the initial deflection 8,5, has no bearing on the ques-
tion of whether or not there will DPe an equilibrium posi~
tion indicated by the intersection of the two curves. It
will, however, have considerable influence on the loca-
tion of that intersection in any given case. The larger 3
the value of §,, the greater will be the deflection be- C

fore the equilibrium position is reached, 1In practice
this may be important, as the result of a large initial
deflection may be that plastic failure of the strut nmay
take place before the equillbrium position is resached,
whereas this might not have been the case 1if the inltial
deflection had been small.

If it should happen that the strut as well as the
beam had an initial deflection, figure 3 and equation (6)
could easily be modified to take the situation into ac-
count, but it should be obvious that this would affect on-
ly the magnitudes of the deflection and supporting force
when the equilibrium position was reached but not the.
question of whether there was such a position, i.8.,
whether the strut is stable or unstable. T

VII. DETERMINATION OF EQUILIBRIUM POSITION
AND SUFPORTING FORCE L
The magnitude of the deflection ai the egqnilibrium

position and the corresponding suyporting force can easily’
be found by solving eguations (&) and (7) simultaneously.
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By this means we obtain

- 2% . o :
'§e T kp kg | (8)
kg kg 8y . | '
Vg = iy ;—E_— : o (9)

If there is initial deflection of the struit equation
(9) can be used to determine the supporting load if §,

be taken as the initial deflection of the beam minus that
of the strut whén the initial deflections ere in the sams
direction, or as the sum of the "initial deflections when
they are in opposite directions. In such cases (8) will
give the additional deflection of thHe strut which should
be added to or subBtracted from the initial deflection to
obtain the total net deflection. 'In any specific case

it should be obvious whether the deflections should be
added or subtracted.

In the deriVaﬁion of equations (8) and (9) it was tac~
itly assumed that.there was no change in iength of the
Jury strut connecting the strut and beam. This assumption
is reasonable in nearly.all practical cases, If it is not
made, the necegsary modifications in equations (8) and (9)
can be developed withount special difficulty.

From figure 3 .1t can be seen that the curves of Wy
and Wg will alwayé intersect except in the special case
where - ky = - ky. 'The intersection represents a condition

of stable equllibrium of the system, however, only when
the algebraic sum of ky and kg 1s positive.

In brief, then, the criteria for the stability of the
system of a strut and beam with a single tle are:

1. If the algebraic sum of the spring constants of
the two members is positive the system ie
stable.

2. If the algebraic sum of_the spring constants of
the two members is negative the system is un-
stable. _ .

3. If the algebralc. sum of the spring constants of
the two members is zero the system is elastic~
ally indifferent.
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It should be rémembered, however, that these criteria ap-

ply only when the load in the strut is less than the crit-
ical load, i.e., the load at which the spring constant is

infinite. -

In this discussion it should be noted that it heas
been assumed that the two members are parallel. If they
are not parallel, as in the case of an airplane Jjury-strut
system, proper corrections must be made to formulas (8)
and (9) to allow for the angle between the two members.
How this should be done will be 1llustrated later in the
nunerical example of an airplane Jjury-strut system.

VIII. SPRING CONSTANT OF A STRUT WITHE A CEANGE OF SEGCTION

In many cases of practical importance, the cross sec-
tion of the member and/or the axial load changes at the
intermediate elastic support. Thus in the usual airplane
jury-strut system, one component of the load in the jury
strut causes the compression in the lower portion of the
1ift strut to be larger than that in the upper section
though the difference is usually so small as to be negli-
gible. A more important practical situation is that it
may be found desirable to reduce the section of the 1if%
strut between the jury strut and the wing spar. The spring
constant for such members can be derived from the extended
three~moment equation. Thus a strut having two bays of
span & and b and moments of inertia I, and Iz, etc.,

with the center support deflecting § inches, may be con-
sidered as a continuous beam and is subject to calcula-~ '
tion by the three-moment equation. The derivation of the
special three-moment equation for a beam with deflection
of supports may be found in ‘the Appendix. T
The general three—moment equation for a beam having
deflection of the supports, but no side load, may be wrii-
ten as followg:™ ' '

My & Gy + 2Mg (a LR b ﬁz) + s b a2 _
Il IZ Iz

%E— (82 - 84) + %’xﬂ—‘ (85 - 83 ) {10)

*For derivation, see Section II of the Appendix, Note that
a and b are used here in place of the more usual I,
and Lo,
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The strut to be considered here will be assumed to
have pin ends. ZLet B, and I; ©be the axial load and

moment of inertia of bay 1-2, and P and I be the ax-
ial load and moment of inertia of_hay_ 2~3. Also let

$1, = I Jy = VEI,/P Ja = JVEI2/P2 YR = P

82 = 83 =-0. Since the member is pin-ended, M; = Mz = 0.,
Equation (10) then reduces to

M )
= - 1L T2 a b, _
82 = 5 §T, I (a By +0D ﬁa/é)
Since 1/3% = P /BRI
¥ .
P, 83 = ~ %‘ TTa_'a—-"—b (a B + b B2/¢) (11)
Jy L
( )
M, - Mg bBW P 8 (y -1
= + +
but R, z 1. T (12)

For equilidbrium about the center suppoft

where M, is the applied end moment, assumed zero in thils
case.

P, 8 is the moment due to the eccentricity of the
arial load P, about the center support, i.se., the center

support is deflected from the line of the two end supports
an amount &8 - 8;. In this case §, = 0.

a Ry 1is the moment due to the end reactlon, assumed

posltive when the reaction acts down, times the moment arm
a. Substituting from equation (12)

Mz = - (By 62 + éL—b W+ P 8 (y-1)% (13)
If we let .
a b
8" = g (a + b ?) 14
22w (e Byt b Ba/ (14)
eguation (11) becomes P, 8, = ~.M3_9' o _.“S1?>m“

*See figure 4.
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From equations (13) and (15)

B 8, = 6! (B 62+ab%+P152 (7—1)% (16)
wfxence
. 1 -8 1 4+ (v -1) &
982 a b : 8 _

Equation (17) thus gives the spring constant for the case
under considerztion, o

IX. CEECK OF SPRING~CONSTANT FORHULAS

Formulas (17) and (3) for the spring constant of a
beam or strut sudbjected to axial compression should become
identical when the axial load and cross section are as-

sumed constants. In this case we would have @ =« = 1

since P, =P, and I, = I;. Equation (17) then reduces

to . el
k= a b (€] (18)

where O is the value of 8' given by equation (14)
when @ = 1, The calculations needed to check eguations
(18) and (3) are somewhat complicated and are omitted %o
conserve. space, but if they are followed through the itwo
equations are found to be identical.*

As tables of P are given in "Airplane Structures"
(reference 2), it will usually be found that equation (18)
is more convenient for practical use than equation (3).

A further check of equations (3) and (18) for the
spring constant can be obtained by assuming & = 0.5L and
comparing with the results of Klemperer and Gibbomns in
reference 3. In this case again the resulting equations
are identical.* These checks of equation (18) do not prove
. the validity of the more general equation (17), but the

writer has been unable to devise any alternative method of
proving the general cage. :

*Schwartz!s detailed proof of this statement is omltted
from this report to conserve space, Ed.
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X. INVESTIGATION OF CRITICAL LOAD CONDITIONS

JUN I R T T, o

The theory of the elastically supported strut is not
guite complete without the development of a method for de-
termining the magnitude of the critical load. The criti~
cal load for a strut may be defined as the smallest value
of axial compression which, according to the theory of
elastic members, could produce infinite benrding moments in

md
v
£

the strut. For the unsuppoerted strut the critical load is
the Buler load (P = m= %% % = ). The critical load of

the continuous or supported strut, however, remains to be
determined., This will be the maximum load under which the
strut can be stable, regardless of the stiffness of the
supports As- the previously developed criteria of stabil-
ity apply only when the axlal load is less than the crit-
ical load the importance of being able to determine the
latter is obvious.

For purposes of determining the critical load the
supported strut can be considered as a continuous beam with
deflection of the supports. As no attempt is made in thise
report to study struts with more than one supporting force
within the span, the supported strut may be considered
more specificelly as a continuous beam of two spans with
deflection of the Internediate support.

In Art, 11:7 of reference 2, Niles and Newell discuss
the determination of the criticael losd of a two-span con~-
tinuous beam with a uniformly distridbuted side load and no
deflection of the supports. Their conclusions are as fol-
lows:

1, If L/3J for both spans is less than 1, the
critical load has not bsen reached.

2. If 1/j for both spans is greater than 1, the
critical load has been exceesded,

3. If L/j for omne gpan is less than 17 and L/J
for the other span is greater than 1, the guestion of-
whether or not the critical load hasg been reached depends
on the sign of the quantity
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+

where the subscripts i and 2 refer to the two spans aidd
P is the coefficient for the extended three-~moment equa-
tion as defined on page 191 of reference 2. 1If this quan-
t1ty is negative, the critical load has not been reachsd,
but if it is positive, the critical load has been exceeded,

These criteria apply egqually to the supported strut.*
From these criteris it is seen that the critical load is
that a2t which

Ly By, La Bs _ o or ‘a B
I I - I

% + b = =0 - (19)

3

e . 1
When eguation {19) is satisfied, B of equation (14)
will also be equal to zZero since Iz = @Il. Under these

conditions equation (17) will evidently indicate that the
spring constant k, is infinite. Thus the critical load
is smallest axial load at which the spring constant be-
comes infinite.

XI. FORMULAS FOR USE IN ANALYSIS

In order to use equations (8) and (9) to determine the
equilibrium position and the corresponding load in the Jury
strut, 1%t is necessary to be adble to compute the spring con-
stants k, and the initial deflections §,, of the two

members. The formulas for these quentities are the same
regardless of whether the member to which they are applied
ig the strut or the beam. TFor gonvenience, all the formu-
las likely to be needed in practice are esither listed in
this section or references are given to places whars they
can be found. The nomenclature and sign conventions are
those of reference 2. The most important items are as
follows:,

*In his original thesis Schwartz proved this statement in
detail for the cass of a supported strut with a single con-
centrated load on each side of the deflected intermediate
support. In his proof he followed the line of argument
used in Art. 11:7 of reference 2, making the changes re-
quired by the difference in the type of side load and thse
presence of deflection of the intermedlate support. In a
recent article in Michigan Technic these criteria have '
been proved to apply regardless of the type of side load.
For thls reason, and to conserve spade, Schwartz's de-
tailed proof has been omitted from this report. Ed.
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Upward forces and deflectlons are positive

L,
a,

b =

gase l.-

CQ.__SB 2.’-

Case B;T

An alternative formula somewhat simpler for practical

e )

length of member

distance from leff{ énd of membér to Jury strut

L -~ a

axial load (tensién.or céﬁpreséioﬁ as iﬁﬁicatedj
modulus of.elasticity |

moment of inertia

NESTE

functioh of L/j found in tables of reference.2.

(page 212) -

spring counstant

deflection o0f  point of connection of jury strut
due to all loads other than the supporting force
or load

v
' : S,

Formﬁlas for Spring Constant

Member of" constant axial teﬁsion load and crosgs

section,'V“

1 (2 b -;j siﬁha.(é/j)

| _ .
4o - - inh = cosh —) 4
P\ T tanh (L/3) ~ 9 SiBR y cosh g (4)

Member of constaent section with no axial load,

3EI L ) '
k. o= P2 (5
° a® b° )

Member of constant axial compression load and

cross section,

leiad sin® (a/3)
P \L tan (L/3)

3 sin ? cos %) (3)

*For derivation, see Section III of the Appendii;

v'“
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1use is

6y _

- P31 (1 -
ke a b 8 (18)
where . 0 = g%*?r (a B, + b ﬁz) © (14a)

P and Pz eare the values of B for a/3 ~and v/,
respectively.

Case 4.~ Member with. axial compressive load changing at

the connection of the Jary strut and of con-
stant cross section on each side of the Jjury-
strut connection,

P, a.{l-e'l[1+(fy-1) %]}
a b 9.r

g
here - 6 = + b = (14)
" m— Jl (2 B ) |

'Y;:Pz/PJ. ®=I2/Il J = VEI:L/P:L

Formulas for 80 ‘

Group l.- Beams of constant section subjected %o axial
tension.

Unless great precision is desired the effect of the
axial tension can be neglected and & conservative figure
obtained from the formulas for the deflection of a beam
without axial load. Formulas for such cases are given in
Art. 15:1 of reference 2. TFor more precision the method
of computing deflections derived in PSectiom IV of the Ap-
pendix of this report may be used.

Group 2.~ Beams of constant section without axial load.
Formulas for these cases are given In many texits and
handbooks. To avoid difficulties with sign conventions,

those in reference 2 are recommended,

Group 3.~ Beams of constant section subjected to axial com-
pression.,

Formulas for these cases are given in Art. 11:5 of
reference 2,
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¥II. NUMERICAL EXAMPLES

In order to render a clearer explanation of the use
of the supported strut formulas, four numerical examples
are worked out below. The first three examples illustrate
very simple structures, but give the more important steps
that should be taken 1n designing the mewbers. The last
example is a specific airplane Jjury strut system.

BExample I.- Two pin-ended struts (fig. 5) are connected by~
a crosstie ¢ and loaded, as shown. Member A has a
large enougzh cross section that it is locaded below the
Fuler critical load. How large must the right-hand
member be in order that the system will still Dbe stat-
ically stabdble?

Given: Item ¥ember A Member B
Name Beam » Strut
P 20 pounds 80 pounds
L 15 inches 15 inches
31 1125 ?

As the size of the beam is given, its spring factor
may first be calculated according to equation {(3) or (18).
The required size for the strut is then found from the
knowledge that 1ts spring factor must be numerically egual
to or less than that of the beam, otherwise the denomina-
tor of equation (8) will not be positive as is reguired
for stability.

From (3) the spring constant of the beam can be found

from
b s .
gl = 2 + ( d - cos i) J sin i : : (3a)
J
_ /B 1125 _ - ' '
J P 50 = 75

5 inches
10 inches

Il
!
]
O
o)
o
~2

J

1
i
i

= 2.000

Cnltt Sy u.[m o' P
-
(@]
I
]
i)
(¥
%]
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Substituting for - in (3a)

-

c

I = 4+1.63

kg ‘ )

ko = + 20_ = 12.3, spring constant of
1.63 ' the beam

Trial values of EI for member B are next substi-
tuted in (3) or (18) until a spring constant is found that
is equal to or less than 12.3. This may be accomplished
most advantageously by plotting several values of k., vs.
J, (3 =« EI?P), and taking from the resulfing curve a
value of L/j which will give a spring constant in the
range of the above limitations. In the above example,
equation (18) was used to obtain the points of figure 6
for Xk, vs. j. Table I in 8ection V of the Appendix shows
the calculations that were made. In actual practice it is

probable that only a few points would have to be calculat-
ed to obtain a suitadle strut size. o

Figure 6 shows that for a spring constant algebraic-
ally greater than ~-12.3, J mnmust be 3,90 or more. Taking
Jd = 3.20 &as repregenting the smallest possible value of

o J = /EI/P = 3.90
P=8 L =15
L= _15 - 3,85
J 3.80
EI = Pj® = 1220
L/j 1is well above T, the critical load for an unsup-

ported strut.

It is interesting to note that efficiency of the above
strut system is very high. The value of ZEI required to
support 100 pounds by a single strut ie: . T

L/j = (critical load for an unsupported strut)
L = 15 P = 100

3 15/m = 4.77
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BI = Pj® - 2280 required for a single support
But the sum of BI of members A and B 1is:

EI (total)

1220 + 1125 = 2345

Efficiency = 2280/2345 = 97 percent

0f course, for .equal values of moments of inertia, a
single strut would be lighter than itwo struts. It must be
remembered that in the above example, stability has been
considered in one plane only. Member B must have either
a support or a large enough section in a perpendlicular
plane to be truly atable in all directions. In streamline
struts this would probadbly be the case.

Bxample II (see fig. 5).- Using the same structure as in
prablem I, but with a concentrated side lcad of 10
pounds on member A4, at the connection of member ¢, find
the smaliest possible value of EI for member B, The
maximum allowable side load applied at point a on
member A is assumed to be 15 pounds. (In an actual
structure, the naximum side lcad on member A would de~
pend upon the yield point of the materiel or its modu-
lus of rupture.) Also determine the lateral deflection
of point & or b when the gystem is in static equi-
librium.

Since the-axial extension or compression of member C
is very small as compared to the lateral deflection of the
struts, it will be neglected. Having an allowabdle force of
15 pounds at point a ard an external side load of 10
pounds, we sece that the maximum supporting load W, in

equation (9) is 6 pounds. The spring constant of a member
A has already been calculated in example I k¥_= 12.3.
Only two unknowns remain: the required spring factor of
the strut and the "initial deflection' of moember 4 due o
extarnal loads. The initial deflection §5, may be found
from the given data and the formulas for the deflection of
axially loaded beams.

As the only external load in this case hzppens to be
the one applied at the supporting point a, §, can be
computed from the spring constant found in example I
k, = 12.3, 1i,e., it reguires 12.3 pounds of locad at a
to defleet 1.00 inch. The deflection of point a due to

10 pounds will therefore be 8§, = 3oz = 0.814 inch. Sub-
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stituting the spring constant and initial deflection of 4
and the maximunm allowabdle suppor*ing farce ¥ in._eguation

(9):

123X0814XE§
123—ks

whence . kg

This indicates that the beam A can supply the lat-
eral support needed to provent the strut B from buckling
provided the latter is of such size that its spring con-
stant is algebraically greater than - 4.10. (If the value
of XXg for the strut taken from curve I is positive, it
indicates that tke strut requires no supporting force, but
if it is negative and larger in magnitude than - 4,10,
will require a larger supporting forco than the beam A
can Brovide without failure of its material )

Pigurs 6 shows that the value of j for member B is'
4.50 when kg = - 4,10, :

Since : 3 =,/ BI/E and P = 80 o
21 = Pj® = 80 x 4,50° = 1620

The deflection of points a and b may dbe found
from the knpwn values of kg for nenber B and the suppori-
ing force W. (See equatiorn (6) and fig. 3.)

Thus W = 5 pounds

—ls-—-—h—-—s = ' e
e = it, TG 4+ 1,22 inches

kS = - 4,10
&

This deflection night also be found by applying the
proper deflection formula 0 nenber 4, as all the loads
on it are lnown (both external and supporting load)., In
the above example, both external snd suprorting 16ads are
applied at the same point and equation (1) may be“psed.

Total side load = 10 pounds + 5 pounds = 15 pounds

kc = 12-3

I8
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_15

5 12.3

A

+ 0 = 1.22“i#ches

wiich checks with the above calculation for §.

It should be noticed that the supporting load will al-
ways be in the same direction as the external side losd on
the beam. This should be fairly obvious 1f 1t is remem~
bered that the system deflects in the direction of the ex-
ternal side load with a comsequent tendency for the strut
to buckle in the same direction. Due to this fact the
supporting load W, and the initial deflection §,, are
elways the same slgn.,

Zxample III.~ The 100-pound weight .of problem I is moved
to the right of member B (fig. 7). HMember A has the
same moment of inertia as before. TFind the smallest
size (value of EI) of member B which will allow the

gystem to be elastically stable.*

Given: Itenm “ember A Momber &
P 20-pound temsion 120~pound compression
L 15 inches 15 inchesg
EI 11258 ?

This exanple ig, of course, the same type as number I
except that the supporting momber is im tension. The stiff-
negs of nember A will accordingly-be found from equation
(4). The value of J for the strut which will give an
equal roequircd stiffrness will then be found from figure 6,
Thus, from (4):

ja b § sink® (a/§) . /@ a
7 + Tanh (L/j) - J sinh \j) cosh J}-

*It should be remembered that a strut having a required
stiffness Just equal to the available subpport stiffness 1ls
really not elastically stable but elastically indifferent.
Such a condition is ezactly the same as the case of an un~
supported strut loaded with the eritical Buler lcocad. Imn
actual design, struts are usually dosigned for the critil-
cal Buler load when & suitable load factor or safety factor
hasg been used to obtmin the design loading.
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a=25, b=10, § = BI/P = . 1125/20 = 7.5 L/j = 2.00
a/j = 0.637 bfj = 1.833 sinh{a/P = 0.7172 cosh(a/J)
1.2306 tanh(L/j) = 0.9640

whence Xkt = 27.9, the spring constant for point a of
member A when that member ie subjected to 20 pounds tension,

From figure 6, the value of J for member B 1s 3.04
when k, = - 27.9. -

I = 3 P = 3.04 X 120 = 1110

It is interesting to note that the strut system of probiem
Il reguires a smaller value of EI for membser B than
in example I, even though the axial compression on B is

50 percent greater. This is due, of course, to the great-
er support given by A when it is in tenslon.

An Airplane Jury Strut System
Example IV.- The structure consisting of the spar, 1ift

strut, and jury strut is shown in figure 8 1oaded for
the inverted £flighs condition.

Given data:

Item _ _ Spar ) : - Lift strut
iy ' - 62,200 (due %6 ovefhang) '_T'u_' c

¥a 0 (pin joimnt) 0

w ' -12.92 _ 0

L 168 inches’ 177 inches
a . 56 inches _ 59 incﬁes )
= (L-a) 112 inches 118 inches

; 152 | o T
P +7830 pounds ~8250 pounds
T 1.3 X 10° (spruce) 30 x 10° (gﬁeg}l;

Jd = EI/P 159 7
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Given data (continmned):

Item B ~ Bnar- . TiLift strut
L/ 1.057 S ? ”
a/3 S izs2) _ )

sinh a/j _ .;5é3

cosh a/ 1.0626 : .

sinh L/} = . 1.B653

cosh L/ T 1.81286

tank L/j © 7., 7845

My 1is the end moment due to the cantilever overhang.

The axial loads are computed in the ordinary wanner, i.e.,
ugsing the given data for sids loading, :

A gtrut esize must be selected which, first, will al-
low the system to remain elastically stabdle, and second,
which will not cause a supporting load on the wing spar
that 1s large enough to stress it berond the modulus of
ruptire.

The procedure s much the same as in the previous ex-
amples,- tut a slight approximation and a correction are
necessary because of the angulaerity between the Jury strut
and the Lift strut.

It is guite obvious that as the force in the Jury
strut of figure 8 is not normal to the 1ift strut, there is
an axial cowponent imposed on the lower bay cf the sgtrut,
As the gurporting forece will be gulte gmall in proportion
to the totel axial load in the 1ift strut, the above axial
component may be noglected with no very great error.

As noted above, a correction must also be made to com-—
peunsate for tine anguvlarity of deflection and supporting
force of the wing spar to the 1lift strut; this correction
will Ve made on the spring constant of the strut. An ex~
aggerated view of the system when deflected is given in
figure 9. 1In thig figures ab and a'd' represent the
Jury strut in the undeflected and deflected positions, ro-
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spectively. Points =2 and b® are assumed to deflect in
8@irections normal to the members when they are in the un~
deflected positions. If aa' is assumed to equal Dbd'?,
the deflection of the 1lift strut (bb') equals the deflec~
tion of .the spar divided by cos a (aa'/cos a). The above
assumption 1§ made on the basis that a'd! equals a'd'!?,
whtch is obviously untrue. However, the error involved is
very small for the small deflections allowablse in ordinary
structures. Thus, if (ab) = 18 inches, bDPb' = 2 inches,
and sin a = 1/3, Db!'bB'' = 2 sin « = 0.67 inches. Thus,
al'd' - a'b!! = 0.67/(2x18) = 0.0125 inch which, in com-
parison with 2 inches, may be neglected. As the deflec-
tion ©b' would be much less than 2 inches in practice,
the assunption that a!d!' = a'b!''! 1isg justified.

It is also apparent {(fig. 9) that the supporting force
normal to the 1ift strut (W) opposes a force equal to the

load on the jury strut (Wyp) times cos &, that is, W

s
(strut) = -~ Wy (spar) X cos a.. Thus, from the above,
8y
v (spar) = 85 (strut) (20)
nd Wy ( )y = Vs (strut) (21)
a iy (spar) = oo g (stru
and dividing (21) by (20)
. .
(—) (spar) = ———~——1r ( (strut)
8/ (cos )
or ky (spar) = kg (strut)/cosa a - (22)

Baving the necessary corrections for the special
case in which the strut and supporting beam are not paral-
lel, we may now proceed with the calculations in the con-
'ventional manner, using equation (9).

The initial deflection of the spar 8,5, can be com-
puted by the method outlined in Section IV of the Appendix.

§ = ~ f (Mg - M) (23)

Since we have uniformly distributed slde load, when =x = a
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. a w a L w 82
L‘lo. = M]_ +- ( Mz - M: ) i‘ - 3 + B)
M, - (M, + 2 h (L/3) + wj®
y = Vs (M, + w3?) cosh (L/j) 3 am ®
sinh (L/J) - J

+ (M, + wj®) cosh % - wj®

Substituting the given data in thé ébove expressions, we
obtain:

i

M - 1199

Mo = = 949

Mg - M = +250°
~250 ~250 5
= = A e . 1
8 783 0.0320 4inch

The spring constant of the spar is odbtained from equatlon

(4)
1 1 /a2 b, j sinh® (a/3)

a a
-1 - h 2 cosh _>
k; - F T fanh (3/3) J einh 3 cosh 3

Substituting the given data gives ky = +2800

In order to facilitate the selection of the best sizo
of 1lift strut for this structure, a curve (fig. 10) of
kg ve. J was drawn ag in example I. The cslculations
for figure 10 are shown in table II of fection V of the
Appendix. This curve shows that the sprilng constant of
the strut changes very rapidly from the critical point to
values of Jj 1in the neighborhood of 33, This indicates
that the best strut size 1s one having s value of J near
the sharp break in the curve (about J equals 33). It 1is
guite apparent that reductions of strut size below this
region J = 33) are accompanied by a very high rate of
change of kg which, of course, causes the supporting
force W of egquation (9) to increase very rapidly. On
the other hand, if a larger size strut is chosen (with a
larger value of j), very little is gained in reduction of
supporting force W Tbecause of the small rate of change
of spring constant above J = 33.

7
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Accordingly, the value of kg in figure 10 at J =

33 is found to be -380. Applying the correction derived
above in equation (2): Since _

= 56 _.
cos O = 59 = 0.95
- 38
corrected kg = =380 = = 421
(0.95)

Calculation of W, from eguation (9)

Wo = - 0.0320 x 5209 X 221
where - 0.,0320 = 8,
2800 = kyp
~421 = 1k,
whence
¥ = - 15.9 pounds supporting load on spar (down).

Since the value of J for the strut is 33

i = EI/P 1=3%L
2
r = (83) X 8280 _ g 2995
30 x 10°
For comparison, a strut having a valus - of J = 32 will be

tried. From figure 10, kg == 520 at J = 32. Correct-

-520
kg = ———=-5 = - 576 ; - -
(0.95) : - e
§ = - 0.0820 x 2300 X 576 _ _ 23 .2 pounds
280C - 576 ]
I = §°p/E = (32)° x 8250

30 X 10 .

Y
3
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Thus we see that a 6-percent reduction of I causes
a 34-percent increase in W, - Lo

It is interesting to make .a ccﬁpapison of the size of
tube needed when the strut is supported and unsupported.
The size of an unsupported tube is:

L/J = m for unsupported strut
and L = 177 inches
or J = 177/m = 56.3
2 ..
1 = 26,37 X 8250 = 0.872

20 X 10°

The nearest commercial size of the above supported tube
having a value of I = 0.282 would ‘be 2-1/4 by 0.083
inches and for a length of 177 inches would weigh 28.3
pounds. 'The size of the unsupported tube having an I of
0.872 would be 3-1/4 by 0,120 indéhes and would weigh 59
pounds, or twice as much as the other. It is qguite evi-
dent that the reduction in weight due to the Jury-strut
system is guite worth while. Of course, the weight of the
Jury strut should be added, in the case of the supported
strut, but as the above calculations show, this member
carries such a small load that it will be a relatively
small tube.

In ordor to select. the best point to connect the Jury
strut, some idea must be had of the deflection curve of
the spar due to external locads, for it is obvious that if
the jury strut happens to be connected to the point of
zero deflection, the supporting force is zero. It has
been mentioned before, however, that this could only be
true for one particular loading .as the point of zero de-—
flectlon moves as a function of the axial load in the
spar. Nevertheless, this movement is relatively small and
a connection in the vicinity of the zero-deflectlon point
is the most logical place to make a joint. Accordingly, a
deflection curve of the spar due to the external loads in
example IV has been prepared (fig. 11). This curve shows
that the jury strut in the above example was placed close
to the point of zero deflection. Due to the lack of knowl-
edge at the pregent time of the actual wing loading which
occurs, 1t ig possible that the external deflection at the
Jury-strut counection is much greater than the assumed
loading predicts., Some calculastion ghould accordingly be
made to determine just how serious and how large the sup-
porting force might be under some extreme condition. For-
mula (9) shows, however, that no extremely rapid change
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may take place as W changes only in direct proportion

to the initial deflection §y. For an actual numerical
calculation, suppose the deflection at the jury-strut con-
nection due to.some very unusual loading should egual the
maximum deflection shown by the curve. This appears to be
as unusual a condition as might be encountered because,
under ordinary loads, the deflection of the above polnt Ig-
very small, . - o

From the curve, we see that the maximum external de-
flection is about 0.15 inch. Taking the same values used
above in the calculation of W for a strut having a value
of j = 32 L

¥ = - 0.15 x 2800 X 576 _
2800 - 576

109 pounds

Thus, for an extreme case, the supporting load is only 109
pounds, which does not appear to be excéssive. A check
should be made, of course, of the bending moments occu¥-
ring due to the 109 pounds concentrated load added to the

external loading.

The avove calculations deal with support in one plane
only. 1In most dosigns of today, the 1lift strut has a
streamline section so that no support is necessary in the
wind direction. However, if a round tube is to bes used,
some means of side support must be made in another plane
besides that one calculated in example IV. This is prob-
ably most easily accomplished as shown in figure 12. As
2 and b would both have approximately the same deflec-
tion under a given loading condition, point ¢ will have
very -1ittle horizontal deflection. The abové assumptions ~
indicate that (ca) will carry very little load. If the
designer feels that a more precise calculation should be
made, the method used in example IV may be used if some
corrections are added to take care of the angularifty’ of
the members of figure 12.
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- PART II
EXFERIMENTAL IKVESTIGATION OF FORMULAS

By Reld Bogert
I. APPARATUS AND TESTS

The tests conducted to check the validity of the for-
mulas derived in the first part of this paper were carrled
out on an QClsen 20,000-pound, hand~operated, testing ma-
chine located in the Materials Laboratory at Stanford Uni-
versity. The apparatus required for the teste ie shown in
the photographs of figures 13, 14, and 15, and in the de-
tailed drawings of figures 16a to 16e and, except where
otherwise noted, was constructed from cold-~rolled steel-
bar stock. The principal parts of this apparatms are (I)
an upper loading bar, (II) a lower loading bar, (III) a
tie rod between the midspan points of the beam and gtrut,
(IV) a pulley system for applying side lozad, and (V) a
screw micrometer for measuring deflections.

The upper loading bar had five 120-degree notches
milled in the top surface to take a 90-degree hardened
steel knife-edge mounted on the head of the testing ma~-
chine., On the bottom surface of the upper loading bar and
the top surface of the lower loading bar thers were corre-
sponding pairs of. 90 -degree notches, five incheg aparit, %o
take test members in compression. At corresponding ends
of the upper and lower loading tars a. slot was milled to
take fittings for the tension test members (figs. 16a,b,e).

The tie rod is shown in detsil in figure 16c. This
rod was required_to prevent relative lateral movement of
the midspan points of the beam and strut and not to inter-
fere with the bending in the heam and strut. It was con~—
structed of two side ploces separated by four blocks, lon-
gitudinally adjustable to take different sized test mem-
bers, and held in position by four machine bolts passing
through slots in the side pieces. The whole assembly,
supported by rollers resting on a standard fitted into
the lower loading bar, wag free to move laterally.

Horizontal side load was applied to the midspan
point of the test beam through a length of piano wire, at-
tached to the tie rod and passing over a ball-bearing
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rulley, to which was fastened a weight pan—-loaded with shot
bags. The pulley was supported on an arm extending from
tahe lower loading bar,.

The screw micrometer was a 1/4-inch steel screw
threaded through a micarta block. It was mounted on a bar
pivoted at the lower loading bar and slotted at the upper
so that vertical movement of the upper loading bar was un-—
imneded (fig. 16d). The scale of the micrometer was cali-
brated to 0.025 inch and a diasl to 0.001 inch. Contact of
the micrometer screw with a bolthead mounted on the tie rod
closed an electrical circuit containing a small flashlight
buld and battery. -

Test members were mede up from solid, cold-rolled
steel-bar stock.

Compression members were 1/2 inch in width and 1/4
3/8, or 1/2 inch in thickness. All were 20 inches long
and were ground to 60-degree knlfe-edge ends.,

The tension member was 1 inch in width and 1/4 inch
in thickness. Special end fittings were required (fig.
16e) and the length between supports was 22 inches.

Values of EI in 1b. in.® werse determined for a1l
test members from bending tests. The members weoere simply
supported on knife-edges and deflection measurements made
for side load applied at midspan. The experimentally de-~
termined values of EI were as followsg.*

Test Members

Yo, Size Trpe EI 1b.in.?
1 1/2 by 1/4 inch compression 19,000
2 1/2 by 1/4 inch L 19,000
3 1/2 by 3/8 inch L 67,000
4 .. 1/2 by 3/8 inech L 67,000
5 1/2 by 1/2 inch . 156.000
6 - 1 by 1/4 inch tension 39, 500

*The bending test data and calculations for EI were given
in Bogert's thesls, but are omitted from this report to
conserve space, Ed.
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The get-up for tests with tho beam in compression is
showvn in the photograph of-figure 15, The test members
were placed at A and B (figs. 185a, 16b) and the external
load at various positiong botween A and B.

The get-up for tests with the beam in tension is shown
in the photograph of figure 14 The strut was placed at B
and the beam at ¢ (figs. 16a, 16b) The external load was
placed at various positions outside of 3.

Deflection measuremnents were made &t the midsgpan
points on each of two sizes of compression members tested
as struts when supported at the midspan point by each of
three sizes of compression members and the tension member

as beams, For sach combination of test members, the posiw-
tlion of the external load on the loading bar was varied,
thereby varying the proportiong of loads in the beam and
strub, and for .éach combdination of members and position of
external load, the value of the side load was varied.

The test program was as follows: (Positions of mem-
bers and load as shown .in fig. 1l6a.)

Schedule of Tests .
Tegt - . Member at ‘Total load Side loade
' o acting at in pounds
, A B c
A~ 1 #5 #3 4 0 - 15 - 30
- 2 5 3 3 0 -~ 15 - 30
-3 5 3 2 0~ 15 - 30 —
B~ 1 5 1 4 0 -~ 10 - 30
- 2 5] 1 3 0 - 10 -~ 30
- 3 5 1 2 ¢ - 10 -~ 30
c -1 4 3 4 0 - 10 -~ 20
- 2 4 3 3 0 - 10 - 20
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Schedule of Tests (Cont.)

Test Mewmber at Total load . Side loads
acting at in pounds
A B c
D - 1 3 1 4 0 - 5 - 15
- 2 3 1 3 0 - 5~ 15
- 3 3 1 2 0 - 5 - 15
E -1 2 1 4 0 - 5 - 10
- 2 2 1 3 6 - 5 - 10
F - 1 4 6 5 0 - 15 - 30
- 2 4 6 3 0 - 15 - 30
- 3 4 6 i 0 - 156 -~ 30
G -1 1 6 5 0 - 10 - 15
-2 1 8 3 0 - 10 - 15
- 3 1 6 1 0 - 10 - 15

In making the tests, the test members were firgt set
up in the apparatus, in a vertical position, and just suf-
ficient total load applied to hold them in place. The tie-
rod blocks were adjusted so that the loading edges were in
contact with the test members, and the clamping nuts tight-
ened. Total load was then increased and the deflection of
the strut with no side load measured. Such deflections
were due to initial eccentricity in the test members and,
as it was desirable to eliminate the effect of this ecceéen~
tricity a8 much as possible, readjustments of the tie-rod
blocks were made until the deflections obtained with no side
load were the minimum possible with the test apparatus. )
Data for deflection and total load were then recorded for
the condition of no side load and incremem.ts of the total
load from the minimum to e maxXximum Just under the failure
load. Similar runs were made for the beam subjected to
constant side loads. In every case initial and final de-
flection readings were taken for the minimum total load
with and -without the side load. “



40 N,A.C.A. Technical Note No. 529

II. DISCUSSION

Scope of Tests

The formulas of Part I were developed for the analy-
sis of a structure consisting of a pin-ended strut sup-
ported at any point, through a tile rod perpendicular to
the axis of the strut, by & parallel beam axlally loaded
and subjected to side loads. Application of the formulas
to an airplane jury-strut system, in which the strut and
beam are not parallel, reguired the use of correction fac-
tors for the relative angularity of the members. In these
tests, however, a set-up was used similar to the condi~
tions for which the basic formulasg were derived. Due to
limitetions in time, it was possible to investigate but
one position for the tie rod and one type of side load on
the beam. The position chosen for the tests was the mid-
span point on the strut and beam, for at this point it is
obvious that the deflections obtained would be greatest,
and the relative effect on the deflections of inaccuracies
in the set=up would bdeleast, The spring constants of the
beam and strut, however, depend upon their geometrical di-
mensions and the type and value of the axial loads. The
spring constant, then, for a given strut, varies with a
change in position of the ties rod when the axial load is
held constant, and varies with the axial load when the po-
sition of the tie rod is held constmnt. In the tests, the
effect of a change in the value of the spring constant was
investigated by varying the axial load. The agrocement be~
tween the theoretical and experimental results, however,
indicated that the change in spring constant due to axial
load was correctly accounted for by the formulas. It is
reasonable to conclude, therefore, that the formulas would
also be correct for a variatiom in spring constant due to
change in the position of the tie rod.

The lateral loading applied to the beam in the tests
consisted of concentrated loads applied a2t the midspen,
or gupporting point, on the beam. The formulas, however,
show that stability of the strut and beam system 1s unaf-
fected by the side load, although the position of equilib-
rium of the system 1s dspendent upon the deflection of the
beam at the supporting point due to the side loads. In
each of the test runs the side load was kept comstant:
Since the deflection of the beam far a constant side load
1s a function of the axial load, the variation in the ini-
tial deflection of the beam covered a wide range. If the
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'stability of the system were dependent upon some function
of the initial deflection, the effect would then be appar-
ent in a comparison of the theoreticel and experimental re-~
sults. As no such general effect is evident from the
curves of figures 17 to 26, it can be concTuded that the
stability of the system is independent of the initial de-
flection and therefore of the type of side load. It seems,
therefore, that the present tests are sufficient proof of
the validity of the formulas for any conditions.

Apparatus

4s the apparatus required for the making of these
tests was, of necessity, somewhat complicated, some comment
on the difficulties involved in its development and opera-~
tion seems advisable.

4xial load was applied simultaneously to the two test
members through an upper and lower loading bar in which pin-
end conditions for the test members were Obtained Dy using
knife-edge loading points. The apparatus and test members
were constructed from cold-rolled steel and no attempt was
made to harden the knife-edges., Only on test member 4,
which was subjected to the greatest loads, howeve¥, was any
mutilation of the knife-edges evident. In preliminary’
tests with beams in tension, the tension member was loaded
through circular pins., The deflections obtained, however,
were considerably smaller than the results of theoretical
calculations indicated. It was thought that this might be
due to friction in the loading pins, so the pins were
ground down to provide a simple knife-edge support (fig.
16e). Although this did not completely eliminate the
Presence of friction, the agreement between the theoreti-
cal and experimental deflections was greatly improved.
The effect of the alteration is shown in figure 25, -

Some difficulty was encountered in satisfactorily ad-
Justing the tie rod to reduce the effect of initial bow
and knife-edge eccentricities, especially in the Targer
test members. This difficulty was due primarily to the
design of the tie rod, the adjustment of the loading
blocks of which was made by sliding clamping bolts in
slots, A4 suggested improvement, but one which limitations
of time made impossible to take advantage of for these~
tests, would be an arrangement for adjusting the blocks'
longitudinally by means of screws. ' -
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In & preliminary study of the apparatus requlired for
the tests, it was thought that the deflections could be
measured on a calibrated dial gcale, the poeinter of which
was fastened to a small pin rotated by the movement of a
wire attzched to the tie rod, wrapped once around the.pin,
and loaded with the side load weights, TFor the desirsed
magnification of the deflections, however, it was neces-
sary to use a pin of such small radius that wire wazs not
sufficiently flexible to wrap around it., A strong cord
wasg used, but due to friction in the pln bearings and
elasticity of the cord, the method was entirely unsatis-
factory. The apparatus was then altered and side load ap-
plied directly through a wire, passing over a large-diame-
ter pulley carried on ball Dbearings, as shown in figures
14 and 15. Deflection was measured by means of the screw
micrometer, used in the final tests, but mounted on a bar
fastened only to tihe lower loadling bar. It was found, how-
ever, that due to uneven action of the loading screws in
the testing machine used, one side of the head of the ma~-
chine was pulled down before the other, thereby giving it
a 8light lateral movement. As this motion was transmitted
to the upper ends of the test members the deflectlion read-
ings were affected. Several other testing machlnes were
tried but the same motion of the hepd was present in =
greater or less degree. in all. The deleterious effect of
this movement on the deflection readings was finally elim~
inated by mounting the micrometer on a bar fastened by sin-
‘gle bolts to both loading bars. In order that the sup~-
portling bar should take no vertical load from the upper
loading bar, the slot, shown in figure 164 was provided
in the upper end of the supporting bar. This method pro-
vided a parallelogram motion and maintained a constant
distance between the micrometer support and the noermal un-
loaded position of-the strut.

Precigion of Dimensional Quantities. and Measurements

The dimensional guantities and measurements for the
apparatus and tests were made as accurate as was practi-
cable with the set-up.

Dimensions of the test apparatus and test members
were made to an allowable variation of £0.025 inch. The
maximum possible error in the value of the axial load in
the beam or strut would then be abdut 2 percent and a max-
imum error in the initial deflection of the beam due to
the length of the strut would be about 1/3 of 1 percent.

4 valid gquantitative estimate of the probable error due to
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inconsistenciles of the material, initial bend, or slight
eccentricity of the knife-edge ends of the test members

is impossible.

The value of ®I in 1b.in.® used for each of the
test members in the theoretical calculations, is the aver-
age of a number of experimentally determined values as
found from bending tests. The maximum variation of EI
determined from these tests was about 3 percent. This
would indicate a possible error in the ‘initial defleetion
of the beam of about 5 percent.

Side load in the tests was applied by weights, in the
form of canvas bags filled with shot, placed in a light

sling. The sling weighed approximately one gquarter pound'_'"

but this weight was neglected in the computations under
the assumption that it would be balanced by frietion in
the pulley assembly and in the rollers supporting the tie
rod., An error im this assumption would affect the deflec~
tions directly im proportion to the ratio of the error to'

the side load. The canvas bags were 5, 10, and 25 pounds ~

in weight and their values were checked on a balance scals
to within an ouncs. . .

Values of the total load were read from the balance
arm of the testing machine to the nearer five pounds, and
corrected for a tare weight of B0 pounds. Small errofs in
this quantity would have a negligible effect when pletted
to the scales used for the curves. Readings of deflection
were made to 0,001 inch and estimated to 0.0001 inch., It
was assumed that movement of the head of the testing ma-—
chine was small enough to neglect the effect of rotation
of the axis of the screw micrometer and that play in the
pins holding the micrometer support was negligible.

The deflection values used in plotting the experimen-
tal results in figures 17 to 26.-are the djfferences between
the deflection readings for the corresponding total load
and side load, and the deflection reading for the minimun
total load and no side load. The validity of these de-
flection measurements therefore depends upon the assump-
tion of a mnegligible deflection of the system for the con-
dition of the minimum total load and no side load. An ex—
amination of the curves of deflection for no side load in
flgures 17 to 26 will show that the rate of increase of’
deflection is small for low values of the total load. The
assumption is therefore justified.
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Experimental Curves

The experimental and theorsetical data are shown in
figures 17 to 26 in the form of curves of deflection as a
function of total load. The agreement, in general, be-
tween the curves is sufficiently within the possible ex—
perimentml error to Jjustify 'the validity of the formulas.

In the theorstical formulas it is assumed that ideal
conditions of loading and material of the strut and beam -
are obtained. In the actual case this is impossible of
realization, as there is always some slight heterogenelty
of the material or small eccentricity in loading which
will affect the action of the strut or beam. In the pres-
ent tests it was found impossible to eliminate the deflec-
tions of the sgtrut under the condition of no side load.
These deflections, however, were reduced as much as possi-
ble and were in the direction in which the side loads were
applied for all the tests. From a conslderation of the
curves it can be seen that, in general, initial differences
in the experimental and theoretical curves are lincreased as
the load increases until a value of the load near the max-
imum 1s reached. At loads approaching the maximum the
curves tend to more nearly agree, The majJor exceptlon to
this 18 in test G, in which the beam is in tension. Fric-
tlon in the loading pin is undoudbtedly the cause of the
high maximum loads, in comparison to the ideal condition,
obtained,

Attention is called.to the fact that the scales of
deflection for all the tests are similar although the load
scales vary for different comblnations of test members.

Practical Application of Results

A study of the experimental curves of figures 17 fto
26 inclusive shows that, in general, the effect of initial
eccentricities becomes less importamt as the L/p ratio of
the strut and the initial deflection due to side load on
the beam increase. Bending moments on the strut due to
small eccentricities, however, are relatively unimportant
when compared with the moments induced by the deflectilon
of the system, XFor minimum bending moments the deflec~-
tion of the supported point due to side loads on the beam
should be as small as possible. The jury strut, in an air-
Plane jury-strut system, therefore, ghould be connected to
the wing spar at or near the point of zerc deflection for
the design load., This point will usually be near the
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point of inflection. The point of zero deflection, how-
ever, will move as the load on the spar is reduced and the
initial deflection at the supporting point will then be
inecreased, This increase in initial deflection, in spite
of & reduction of the external loads may cause the criti-
cal bending moments on the strut to bPe those for a loading
less than the design load. The designer should take this
possibility into account unless further study of the gen-~
eral problem should prove this to be unnecessary.

A curve hag been included in figure 25 %o show the
effect of friction in pin bearings on the deflection char-
acteristics of a jury~strut system. PFriction 1s evidently
desirable from a consideration of structure rigidity,
since it materially reduces the deflections by inducing
restraining end moments in the strut and spar. Such re~
straining moments in pin bearings, however, are small, and
should be neglected in practical design.

In test B3, in which were tested the smaller strut
and the largest beam, bending occurred in the unsupported
semispans of the strut before the midspan point of the
strut had reached a maximum deflection. The strut assumed
an S shape rather than the usual simple bow. This bend-
ing in the individual spans was first noticeadle at an ax-
ial load in the gstrut of about 1,750 pounds, which gives,
for the whole strut, a value of L/j = 6.0 and, for the
semispang & value of L/j = 3.0. In no other test was
there any apparent S T©vending of this type in the unsup-
ported spans. The maximum load, however, on the smaller
strut (No. 1) was obtained in test Gl for a total load
of 910 pounds. In this test the load in the strut was
1,910 pounds ard L/j of the semispan was 3.17., The nmax-
imum load on the larger strut (No. 4) was 3,820 pounds in
test Fl corresponding to a value of L/j of 2.45 for
the semispan. It will be noticed that, while bending in
the unsupported spans occurred in test B3 at a value of
L/j = 3.0, there was no noticeable bending in the unsup~
ported spans in test Gl for a value of L/j = 3.17, or
slightly more than 1. The curves show, however, that, in
test Gl1, the maximum load was obtained at a deflection
approximately five times that of test B3. Although the
results of these tests are not, in any way, éonclusive evi-
dence on this point, they would indicate that the restraint
coefficient ¢, for the unsupported spans, increases as
the deflection at the point of support of the struf in-
creases. It may be remarked also that the midspan point of
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support, used in these tests. would be expected to be

least effective in increasing the restraint cosfficients
for the individual spans. If the sirut were supported at
the midspan point by a rigid sugpport, the 1individual spans
of the strut could act as simple pin-ended struts, the
whole strut bending in an S shape. If the point of sup-~
port were shifted to either side of the midspan point, how-
ever, the shorter unsupported span would provide an end re-
straint to-the longer span. A4s the airplane Jury strut 1s
usually located between the third and mid points of the
strut, an investigation of the effective restraint coeffi-
cients when an elastic support is used at locations other
than midspan would be highly desirable.

An interesting observation, from the results of thesse
tests, is that for the type of set-up used, and if the
beam and strut ars the same length, the maximum load car-
ried by the combination is approximately the same_ regard-
less of the proportion of load in the beam snd strut. The
meximum total load is reduced only slightly as the propor-
tion of load in the strut i1s increased.

The resiults of the tests described in this paper are
shown graphically in the curves of figures 17 to 26, in-
clusive.* Theoretical wurves, calculated from the formu-
las for the corresponding test conditions, are included
as a basis for comparison. The values of total load for
the experimental curves have been corrected for a tare
welght of 80 pounds, and the deflections given are equal
to the difference between the deflection reading for the
corresponding total load and side load and the deflection
reading for the minimum total load and no side load.

*These figures cover only about half of the tests made,

tut they incliude those in which the divergences bhetween

the experimental and theoretical curves are a nmaXiwmum as

well as those in whiclh they are a minimame. As these ten

sets of curves are a falr sample, including both the best

and the poodrest experinmental resalts, the other nine sets

have been omitted to conserve space. E4, -




N.4.C.A, Technical ¥ote Wo. 529 47

The derivations of formulas in the following sections
are carried out parallel to the derivations of the Newell
equations in Chapter XI of reference 2. TFormula numbers
preceded by the letter N denote references to the equa-
tions in that book. The nomenclature used is also, so far
as possible, the sawme as that employed by Newell. The more
common symbols and their meanings are as follows:

W, intensity of distributed lateral load in 1b. per
in., positive when acting upward.

W, magnitude of concentrated lateral icad in 1b.,

positive when acting upward. ,

s .
iy bending moment in in. 1lb., positive when 1t tends
to cause compression in the upper fibers of the

team. - --

[xn
-

slope of elastic curve of %
positive when the tangent r
right.

he beam in radians,
ises from left to

\

8, deflection in in. ositive when the deflected po-
» P T
sition of a2 point is above the originmal position.

F, axigl laoad, 10.

E, wmodulus of elasticity of the material, 1b. per
SQe 1D

I, moment of inertia of the sectiion in ind

L, length of span between supports in inches.

=, distance to a section from the left end of the
span in which it is located, in inches.

a, distance from the left end of the span to the
o

point of application of & concentrated side load.
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SECTION IX
Derivation of the Extended Three-Moment Equation

with Deflection of Supports

The first step igs the derivation of formulas for a
single span beam having a uniformly distriduted side load,
axial compression, and deflected supports. It must be
noted that the axial load P 1is not in line with the sup-
port points but is always perallel to the basse line from

which & is measured. (See fig. 27.)
Talting moments about support (2), we have for Ry

WLy? M - My P (8, - 82)

Ry = - v (4.1)
L ZL-L Ll Ly
and the moment at any polint is )
wxR WL My-M P(& -82)
May, o+ ol (Tha HMaTMy 2 ) (75 A2 .
1 2 2 Ll ) l) ( )
This expression is the same as that obtained in reference .

2 {(p. 188), equation (¥ 11:1) except for the addition of
the deflection terms.

On differentiating twice with respect to x, the de~
flection terms vanish and the differential egquation ob—~
tained is the same as that given on page 188 of reference
2 for the case without deflection of supports. As the
boundary conditions are the same for the two cases, the
expressions for M, equation (¥ 11:2), including even the
constants of 1ntegratlop, are also 1dentical for the two
cases., The same would be true for any other condition of
side load, so we Tind the interesting fact that the ex-
pression for moment in a span of continuous beam in terms
of the end moments and side loads on the span is independ-
ent of any deflection of-the supports. This does not mean
that the moment in the span is unaffected by such deflec-
tions, since the end moments are definitely influenced by
it as will be seen below, but only that the formula for
intermediate moments in terms of end mowments i1s unchanged.

The effect of support deflection reappears when we .
~0btain an expression for deflection at any point in the
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;t>
(@}
>
3

span by substituting the value of ¥ from equation (N 11:2)
in eguation {4.2) ard solving for . This gives an ex-
pression identical to (N 11:6) except for the addition of
the deflection terms

1%+P51—P(61—63)§

slope of the tangent to the elastiic curve at any
obtained by differentiating the deflection egua-

1P (8, = 8,0\
_§< T J

Three-¥oment Zguation
The three-monment eguation is obtained in exactly the
same way as described in article 11:3 of reference 2 oun
page 19%0. The final equation is exactly the same as egua-
tion (I 11:11) except for the addition of the deflection

It should be noted that after
for a specific case by means of the three-moment eguation,
a deflection term must be added in the calculation of %the
reactions of the beam as indicated in equation (A.1). Thus,
the deflection term P (§, - 52)/L1 must be included in
the expression for R, =and -P (8; -~ 8z) L. in the ez~
pression for Sez. )

s has been obtained

SECTION III
Derivation of Spring Constant for a Bean
Subjected to Axial Tension
In order to determine the spring constant for a point
on a beam subjected itc axial tension, it is necessary to

develop the formulas for the deflection of a beam of this
type due to a single concentrated side locad W. sSuch a

L4
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beam and the forces actin

1

The bvending noment

IV’:

where Vg ig the
znd momentsg, ¥, and Hp,
ing slone, while P ¥y
axial load and the deflection., In %
ly side load & conceantrated one, the
appear in ¥, to any power bult the

bending moment due
and the tr
i1s the second

tiating twice with respect to X, t
disappears and the expression for mo
SRt A :
E-boo
dx J
The solutions of this differential e
M, = €, sinh £ + C,cosh =
¢ o
v . bl x
Hy = C3 sinh T + C4 cosh 3
e
Althougsh the general form of th
is the same for the two sections int

vided b} the supporting
makes it
stants of

load, the pr
necessary to use two eguati
integration for the two se

Three of the constants of integ
ed from the boundary conditions thatb

when x = 0, M = U,
x = L, ¥ = Hp
e =z i i
X a, I'a' is
of which eguation 1s usged.
For the fourth constvant
method of evaluation ig to different

and (4.,5) with respect to thus

Ey
for the shear on sections nor

of integration,

Yo. 529

shown in figure 28,

in the span will be
(A.3)
to the effect of *he
angverse load W, act-
ary moment due to the -
his case, with the on-

varisble x does notl
first, On differen-—

herefore, the term M,
ment becomes

niaatlion are

when X = g (A, 4)
when =x = a (A.5)

e egquation for moment

o which the beam is.di-
esence of that 1load

ons with geparatv con-
ctions of the bean.

ration can be cvaluat-

the same, regardless

the simples?t
iate equations (A.4)
obtaining expressions

mal to the elastic curve of




’ ¥.£.C.4, Technical Note ¥o. 529 51
the beam. When =x = a, these shear expressions should
. give values which differ by the amount of the concentrated

l load W.

Proceeding along these lines, we obtain

¥, . - ¥ 5 sinh 2 a
Gy = —_ e - d - ¥ j cosh -~
sinh g tanh ¥ J
J J
C,'g, = dlq
M (i W inh 2 cogh 2
Lend o b 1 el C iy
_ F J_s J hi
s = T
sinh =
J
Ce = H, — ¥ J sinh &
- J

For purposes of computing deflections, equation (A.3) may
be written

7 .
. y=-5 (Mg - ) (23)
Substituting the values of ¥ from eguations (A.4) and
(4.5)
¥ o= - L (¥4~0C, sinh £ - O, cosh =) when X = g (A.8)
r ) %o} 1 1 2 j ) r 'j ’/. fal .
N N R < 3 .
y=-3 (Ho~Cs sinh 3 0. cosh 5, vhen == a (A7)

Since, in the case in which we are interested, the
beam is assumed pin~ended, ¥, = Mz =

¥, = - b x/L when x=a and My = =W a(l-x)/L when x= a

ffhen =x = a at the supporting point, the deflection

Yy = 8 can be obtained by substituting these gqualities in
either equation (A.8) or (A.7), whence
i &
P ba . & SIBEG & -
. 7 = 5~ + J sinh 5 (~———~— - cosh 3 (A.8)
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or
,ab j osin¥® (a/3) o a

1 . 2\
B, 7P \T Yanh (L/3) J 3 3

SECTION IV

Deflection of a Beam Subjectcd to Axial Tengion

The deflections of a bsam subjected to axial tension
and any side load may be obdtained from formala (23) above
1f proper changes be made in M, and M to allow for the

difference in the type of side loading.

Wnen the side load is unifornly distributed over the
span the deflection can be obtained from the formula given
in reference 2 for this case. (Sce p« 208.)

Thus
M. - ¥ R
o =+ (M + Bt ox . EIE o EE) ‘
Dg - Dl coO Sh. :E"“ < b ’7
¥ = - 4 ginh + + D, cosh T - w j?
sinh o J
J

There . o= My o+ ow g®

D,

=

My + w 7

The formulas for this and other types of side loading
can 2lso be obtaianed from formulas for the same type of
side load and axial compression by the following procedure.

ls Substitute for each trigaoméiric function the corre-
sponding hyperbolic function.
2. Reverse the sign of w 3 {(bat not that of W j)
where 1t appears. i

2« Substitute P for +P to indicate the effect of
changing the character of the axial load in tlhe formula
for deflection. Applying these rules to the case of a side
load varying uniformly from w 1b./in., at the left supwort
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to (v + kw) 1b./in. at the right support, we have*

3 = . = T . £X :2
¥ ¢, sizh 3 + Cz cosh 3 (1 4 5 ) ¥ J
Where
My + (1 + X) w 3% = (¥, + w §°) cosh L
C1 = = i
sinh =
J
Gg = (L‘:l T W J2>
and
— ;L‘ 1r ' s X wLX _ kwlx o

L

i

- Co cosh 3?—+ (1 + 52 5 5°)7]

*Note that %k in these formulas 1s not a spring constant
put the ratio between the side loads at the ends of the

spells
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Computation of Spriag

TABLE I:

SECTION

Calculations for

Technical Yote

¥

L

Yo,

of

529

Figure 6%

54

Constants fer Humerical Examples

; }:% Do, | g lmBtnf]| o ey
_

4, }l 2.20}1-0913 1,6124F 21.580 1,1590 1 ~3,293
1.548% 15 2.50%1:1009i 1,7%325| 22,829 ' 142407 100

16751.26 2.=O%l,1114 1.88bB4| 24,402 1.,5607 | ~8,625
4.00Ull‘25 2¢5O§1.1225 2.,0864 26,4756 18385 ~10.,950
5-846 130 2.60§L.1345 2,3518) 29,290 2.+2000 {~13.090
345711140 2.80i—.1610 339631 39.768 34653 —17.07Q
Ba3331 LeB0 3.00%1.1915 7eB4LB6] 79,443 7.9443 1-20,980
2.94111,70 5.40!1.2675[~3.0787 —-34,451 —-341404 |~31.640
®1: is computed from eguation (18),.
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TABLE II: Calculations fo k, of Figure 10%
P, 1 i -
; = 12 e B [mhTRE S e
J . -
31 1+093:i3.808[+1L.37231-0,79701 -13,080 {~0.1784}-1386
32 1.,84413,688; 1,33821-1,1242] ~53,702 ~-.68701 -516
34 1.735 {34470 1,2833!1=2.3b37|-202,0282 [=~2.290 - 301
36 1.6%015.278 2423 1-6.39 ~68L.23L |~8.550 -235
40 1.475;2.950 1.1839| 55,5875 729,175 5,970 ~175
1
45 1.319i2.622 1,14011 2.4367| 3B4,797 2.295 -~119
50 l.lSOiZ.BéO 14107%72] 1.81951 280,028 1.469 - 67
56.5*|1.048}2.094 1.0819) 1.51086}) 242,083 1,000 0
, i
¥k, 1is computed from equation (18),
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SECTICHN VI

Samples of Experimental Data and Deflection Computations

Although it has seemed advisable to omit most of the
detailed experimental data and deflection curves, 1% ap-
pears advisable to include samples of this part of the
work in corder to show a little more clearly how the curves
cof figures 17 to 26 were obtained, For this purpose the
experimental dats for test E~1 reductions of 'the general
formulas for the special cases studied, and values conputed
from these formulas for the theoretical curves for tests
B-1 and G-1 ore given in this sectlon of the Appendix.

Experimental Data -~ Tes{t E~1

Noe.e 2 at A Noe, 1 at B Locad at 4
PT 8 P‘I‘ 8 P:—Jxﬁ 8
N.S.La 20| 0 NeS.L. 200 X.S+DL. 200
340R0.0003 5 1b. 2010.0252 10 1b. 20(0.0460
5504 .0001 195 .0293 135 0539
75 L0044 295| ,0332 300{ .0660 ]
855 ,0097 415] ,0402 420| ,0809
200 -,0002 540] .0B521 535! ,0998
7051 0781 660| 1465
£05| .1205 735 ,1718
870| .1849 20| .047s6
20] .0261 eS.Le 20 ~,0002 )
¥.S.L. 20! .0013 -

For locations of loads and specimens, sce figure 1l&.

P, total load indicated by testing machine corrected for
tare welght of 8C pouvnds.

Co

deflection of mid-point of specimens measured from po-
sition with miginmum total loed and no side load.

N.eS.Ls indicates the condition of ninimun total load and
no inside load. ’
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Reducticn of General Formulag of Part I for the
Special (Cases Investigated Experimentally

Reduction of equation (3) for the spring constant of

g strut in compression for the case where a = 0.5 L
= b-
Equation (3) is
i gin® 3 N
1.1 <§_E +odosin® (ald) |5 oain 2 cog 2)
ko P\ L tan (L/3) J J
Substituting a for D, " 2a for I, and A for
a/d
P a sin2 A . N\
- m— = E R A A )
i 5+ 3 (5552 sin cos J
&, sin® A cog 24 . N
= & 4 52 - n A cos A
2 \ sin 24 st J
= 2 4+ 3 [sin® A <?osg A - _sip® &) | sin A cos.A>
2 N 2 sin 4 cos A
= - $ o 2 — 2 4
= & 4 (cos A gln LA 2 cos N
J ANy & CO%U A. s
=& - 1
5 5 tan A
1 i e . 2
2= . d 2L pan B A6
g 55 &j tan 3/ ( )
Reduction of equation (4) for the spring constant of a
strut in tension for the case where a = b = 0.5 I,
Equation (4) is
1 1 /a b i sink® (a/3) .. a a\
= = + - g - sinh = cosh =}
ky P I tanh (L/J) J J J/
Substituting a for b, 2a for L, and A for a/j,

|

/o 2 72 A L.
pog (sinE® A cosW A _ inw 4 cosh 4 )
d " J

P
ky sinh A
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P2, <gigh2 A (cosh 24 -~ 2 cosh® 4)YN
D 2 2 sinh A cosh A /
= & 43 (cosh? A F siph® 4 - 2 cosh® A>
2 2 coth A
=2 -4 1 —
b 2 coth A
L 3 va a
~— = = (T - tanh T/ A7
g 2P \J anit 3, ( )

C. Derivation of formula for deflection of support point
when the only external load cn the beam 1Is a concen=-
trated force at the support point. _

In the case repregented by the tests, tho initial de~

flection of the beam §&,. can be obtained from the spring
constant of that member. Thus
8o = S/ky .

where S 1is the gide load in pounds
IS
Zy, spring comnstant of the Dbeam in pounds per inch.

Substituting this relation im equation (8) to deter-~
mine the deflection 59 of the conbination of beam and
strut, we have
g 60 S ( 8)
- A
ky 4+ kg kp b kg ’

Numerical Values of Spring Constants

values of the spring constants for specimens 1
compression, and specimen & in tension, are given

Th

and 2

[l

beclows The constants for svecimens 1 and 2 were computed
from equation (4.68), and those for specimen 56 from egua-
tion (A.7). -
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Spring Constants for Specimens 1 and 2

59

10 inches

Size 1/2 by 1/4 inch EI = 19,000 1lb.,in.? a =
Axial load compression o

P kg P k, P k, P I,

0 |+114.0 | 280 44.9 600 -32.3 | 1200 | -186.0
60 99,1 | 300 41,5 625 ~38.7 | 1225 | -193.2
100 90.3 | 350 29.4 660 ~4%7,3 | 1250 | -199.5
120 85,4 | 275 22.8 700 ~58.1 | 1260 | -202.2
140 80.3 | 400 17.1 7 50 ~70.3 | 1400 | =240.0
150 77,9 | 420 12.2 770 -75,0 | 1470 | -258.8
180 70e2 | 440 7.1 840 -92.6 | 1500 | -R2BB.5
200 65.8 | 450 4.3 875 | -101.1 | 1680 | -317.5
210 63.7 | 430 -5,7 880 | -102.9 | 1750 | -337.5
220 60.5 | 500 -7, 7 900 | -108.8 | 1875 | =377.5
240 56,6 | B25 | ~13.6 | 1000 | =133.5 | 2100 | =445.0
250 53.4 | 560 | =-22.1 | 1050 | -147.0

Spring Constants for Specimen 6
Size 1 by 1/4 inch I = 39,500 1b.in.® & = 11 inches
Axial load tension o T

T ks P Ty P Xy P ki

O | +177.6 | 120 | 203.5 350 2565.2 800 352.0
20 | 180.,0 | 140 | 209.0 400 270.0 880 36842
40| 186.8 | 160 | 212.0 440 274.0 200 372.2
60| 191.5 | 180 | 218.5 600 307.5 | 1320 461,0
70| 19%.2 | 200 | 222.1 660 320.0 |- 1540 B09.5
8O | 294.5 | 220 | 226.2 700 329.8 | 1760 BEL1.0
100 | 197.5 | 300 | 243.5 770 | 344.5 | 1980 600 .0
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Theoretical Deflections for Test E-~1
Bean Mo, 2 Py = 043 P
Strut XNoe. 1 Ps = 0,7 P
i Se
Xk } -+
Pb PS =~b ks ; 1{D 5 S = 5 = 10
.} 0 +114,0 +114.0 +228,0 | 0.0219 {0,0438
60 140 9S8, 1 803 179.4 .0278 05586
120 280 85,4 44,9 130.3 .0383 0766
150 350 7749 29 .4 107.3 «04865 . 0930
180 420 702 12.2 82 .4 L0607 1214
210 £30 6347 ~5,7 5840 0863 £ 1726
240 560 58,06 —-22 ¢l 3445 e 1450 «2900

Theoretical Deflections for Test G~1

gul -.‘:3.01 6 P'b:]_olo PT(tenS-)
ut No. 1 P,=2.10 Py(comp.)
i

Py | Pg |k ke etk Se

0 s b 8 D7 s S = 10 = 15

0 O] +177.6 | +214.0 | +291.6 | 0.0543 0.0515
220 | 420 | 226.2 12.2 1 238.4 L0419 .0628
440 | B840 | 274,0] -92.6 | 18l.4 .G551 .082%
660 | 1260 | ©21.0 | =202,2 | 118.¢ .0841 .1263
770 1470 | 344,5| -258,8 85,7 .1168 . 1750
830 | 1680 | 368.2 | —-317.5 50 7 L1970 .2958
4 Universiiy,

alifoynia, Februazry 1935.
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